CoCLEAN: Collaborative Data Cleaning

Mashaal Musleh

University of Minnesota
musle005@umn.edu

ABSTRACT

High quality data is crucial for many applications but real-
life data is often dirty. Unfortunately, automated solutions
are often not trustable and are thus seldom employed in
practice. In real-world scenarios, it is often necessary to re-
sort to manual cleaning for obtaining pristine data. Existing
human-in-the-loop solutions, such as Trifacta and OpenRe-
fine, typically involve a single user. This is often error-prone,
limited to a single-person expertise, and cannot catch up
with the ever growing volume, variety and veracity of data.

We propose a crowd-in-the-loop cleaning system Co-
CLEAN, built on top of Python Pandas dataframe, a widely
used library for data scientists. The core of COCLEAN is a new
Python library called Collaborative dataframe (CDF) that al-
lows one to share data represented as a dataframe with other
users. CDF is responsible for synchronizing and aggregating
annotations obtained from different users. The attendees will
have the opportunity to experience the following features: (1)
Data Assignment: Given a dataframe, the owner can assign it
(or a subset of it) to different users. (2) Supporting both lay and
power users: lay users can use a GUI to do only manual data
cleaning, while power users can work on the assigned data
through a Jupyter Notebook where they can write scripts
to do batch cleaning. (3) Combining machines and humans:
Possible errors and repairs generated by machine algorithms
can be highlighted as annotations, which can make the life
of users easier for manual cleaning. (4) Collaboration Modes:
CoCLEAN supports two modes: blind-on (no user can see the
annotations from others) and blind-off.

CCS CONCEPTS

« Information systems — Data cleaning.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06...$15.00
https://doi.org/10.1145/3318464.3384698

Mourad Ouzzani, Nan Tang
QCRI, HBKU
{mouzzani,ntang}@hbku.edu.qa

AnHai Doan

University of Wisconsin
anhai@cs.wisc.edu

1 INTRODUCTION

Data is a critical asset for decision-making across an orga-
nization, but data is useful only if it is of high quality. Un-
fortunately, real-life data is often dirty [1] and data cleaning
is undeniably a laborious and time-consuming task. Despite
decade-long efforts to develop automated data cleaning solu-
tions [2, 4], these may not be accurate enough, especially if
the output of the cleaning process is to be used in mission-
critical applications. A chief reason for this inaccuracy stems
from the fact that detecting and repairing data errors of-
ten require human cognitive and decision-making abilities,
which may be hard to fully automate. Hence, manual data
cleaning is unavoidable in many practical scenarios. How-
ever, most human-in-the-loop data cleaning tools, such as
Trifacta! and OpenRefine?, only interact with a single user.
For data cleaning, however, no user should work in a silo,
nor should she be - a collaboration from a group of users is
often expected and would deliver better and faster results.
This is especially true when some parts of the data can only
be cleaned by specific users.

To enable collaborative data cleaning, the following fea-
tures should be supported: (F1) Share data or a subset of
data across multiple users. (F2) Support both lay and power
users: lay users do manual data cleaning in a Google Sheets
style while power users write code, for example, in a Jupyter
Notebook. (F3) Integrate output of machine algorithms: this
output, in the form of possible errors or repairs, should be fed
to users as hints. (F4) Allow different modes of interactions
among users.

Our Proposal. We present COCLEAN, a collaborative data
cleaning system to support the above required features. Co-
CLEAN is built on top of Pandas dataframe, the most popular
library for data scientists to explore and analyze data. The
core of CoCLEAN is a new Python library called Collabo-
rative dataframe (CDF), which allows one dataframe to be
shared by multiple users (F1). Using CDF, power users can
write code as if they are working on regular dataframes (F2).
In addition, we offer a GUI for lay users for direct manual
cleaning of the data (F2). Lay users inspect data cells on the
GUI to see possible errors or repairs generated by automated
algorithms, and power users can see them by invoking pre-
defined CDF APIs (F3). CoCLEAN also supports two different

https://www.trifacta.com
Zhttps://openrefine.org

https://doi.org/10.1145/3318464.3384698
https://www.trifacta.com
https://openrefine.org

collaboration modes (F4): blind-on where a user cannot see
the annotations from others (such as in Amazon Mechanic
Turk), thus avoiding possible biases; and blind-off where
users can see others’ annotations (similar to Google Sheets).
The source code for COCLEAN along with example note-
books are available at https://github.com/qcri/coclean.

Related Work. (1) Online Spreadsheet Sharing. Sharing
spreadsheets is a common way to work collaboratively on
the same table. This includes tools such as Google Sheets or
online Excel. Collaborators on one shared task can chat with
each other, and can overwrite each other. (2) Online Code
Sharing. Another line of work is to share code online such
as Google Colab® or Github. They are designed for scenarios
where different collaborators can work on one task in an
incremental fashion. (3) Crowdsourcing Platforms. There are
also Crowdsourcing platforms such as Amazon Mechanical
Turk, Figure Eight?, and Amazon SageMaker Ground Truth
for machine learning labeling®.

With regards to the required features stated earlier, (1) is
designed for collaborators to work in a centralized fash-
ion allowing them to see and overwrite each other annota-
tions without the ability to aggregate the results. In addition,
power users can write code for more advanced operations
only outside these systems; (2) is to collaboratively write a
program — code sharing is different from data sharing; and
(3) offers limited collaboration since one cannot see anno-
tations from others and there are no simple ways where
power users could write code to annotate (flagging cells as
erroneous or changing them to new values).

CoCrEAN fills the gap left by the above systems for a true
and easy to use collaborative data cleaning system where
both lay users and power users can collaborate. Moreover,
CoCLEAN opens opportunities for future studies, such as of-
fering more interaction modalities amongst users, and feder-
ated cleaning and inference that can generalize the feedback
collected from multiple users.

2 AN OVERVIEW OF COCLEAN
Figure 1 gives a high level overview of how CoCLEAN works.

Server. The server takes a table D as input, and optionally
runs automated data cleaning algorithms on D, which will
output either candidate data errors (e.g., D[i, j] is wrong),
candidate data repairs (e.g., the correct value of D[i, j] = v
should be v’ where v’ # v), or both. The server will then send
the data to users, receive their annotations, aggregate the
results, and synchronize users’ actions to reflect the global
annotations and aggregated results so far. Note that there are
two modes: blind-on where users work individually and send

3https://colab.research.google.com/
4https://www.figure-eight.com
Shttps://aws.amazon.com/sagemaker/

Cleaning Alg 1 XEEEE Cleaning Alg m

candidate repairs

candidate errors

—
aggregated results

>

Synchronization

4

user annotations

Jupiter
Notebook

A i

Figure 1: An Overview of CoCLEAN

their annotations to the server, and blind-off where each user
can see the annotations of other users as soon as those users
commiit their (partial) annotations to the server.

Users. Each user takes a copy of D, with any automatically
generated candidate errors and candidate repairs being high-
lighted, indicating that these annotations are generated by
machines. Each user will then produce local annotations (er-
ror flags or new values) and commit these annotations in a
small-batch fashion. The user which first initializes the data
and shares it with others is the owner of this data.

We consider two types of users: lay users who put their
annotations through a GUI, similar to Google Sheets; and
power users who annotate the data either directly using a
GUIL, or through writing code in a Jupyter Notebook.

GUI Interface. Users can perform two basic operations on
any given cell, Flag and Update. COCLEAN provides lay users
with a web-based GUI interface which mainly consists of
a data view table and multiple facets that facilitate filter-
ing each column and navigating across the data. Flags and
updates are done via simple Ul interactions such as clicks,
right-clicks and typing-in the new suggested values. Depend-
ing on the blind mode (on or off), we utilize the right click
context menu to show suggested flags and updates from
other users, and to allow users to quickly reuse them. Color
codes are used to indicate cells with suggested flags or up-
dates and thus provide hints to guide the user to such cells
for more feedback. Each dataset has a unique URL that is
created by the server when shared either by the lay user
through the GUI interface (by simply uploading the dataset)
or by the power user when she invokes the share command
as will be explained next.

https://github.com/qcri/coclean
https://colab.research.google.com/
https://www.figure-eight.com
https://aws.amazon.com/sagemaker/

CDF Library. CoCLEAN implements a Python library called
Collaborative dataframe (CDF) to allow power users to eas-
ily share their data represented as a Pandas dataframe with
other collaborators. CDF extends Python’s dataframe® and
is therefore compatible with any other data science frame-
work that processes regular Pandas dataframes. In addition,
CDF provides additional APIs that can be invoked by users
to share and work collaboratively on a dataframe. Table 1
shows some of the extended CDF APIs. Intuitively, data in
CDF are accessed and modified using the traditional accessi-
bility methods of dataframes such as at, loc, iloc, and so on,
or indexing using “[]” or filtering using the methods filter,
mask, and where. Batch operations such as updating a whole
column are done by selecting a subset of the data.

Accessing CoCLEAN through a Jupyter Notebook. Power
users can use CoCLEAN through a Jupyter Notebook for
more flexibility in sharing and working on the data. They
can create a new CDF dataframe from CSV files, existing
dataframes, or by providing the unique URL of a previously
shared dataset. The created CDF will automatically connect
to CoCLEAN backend server to fetch the data and establish
the collaboration session. During the annotation process,
users can write code or use a GUI inside the Jupyter Note-
book. For example, a user can execute the following Python
snippet to clean and standardize city names cdf[cdf.city
== ‘nyc’] = ‘New York City’.In all cases, CDF keeps a
copy of the original dataframe and automatically captures all
the updates applied to the dataframe and regularly pushes
them to stay in sync with the server and other users.
Jupyter users also have a GUI interface shipped with CDF
and can work simultaneously with the code side-by-side.
This GUI is similar to the lay users’ interface and provides
similar interactions such as color indicators, filtration facets
and the right-click menu to show annotations from other
collaborators. CDF can be accessed directly in this view,
which gives users the flexibility to perform single operations
using the GUI and/or batch operation using the code and to
quickly switch between them without leaving the notebook.

Aggregation Policy. Once all users commit their work, the
data owner can consolidate the data through a resolution
policy. CoCLEAN currently implements basic policies such as
at least which defines the minimum number of annotations
provided by users to consider a cell as erroneous, and major-
ity voting to choose between multiple updates. If a certain
cell cannot be aggregated automatically, it will be returned
to the owner for arbitration.

Backend Server for Synchronization. The server uses
MongoDB to store flags and updates in two separate col-
lections in the form A[i, j, a’] and U[i, j,v’] where i, are

Shttps://pandas.pydata.org

API Usage
share Shares the dataframe and returns a unique
URL for other collaborators to work on it

commit Commits the changes to the server
Aggregates the annotations and updates
based on a given policy

Shows the original shared dataframe
without any input from current user

list_my_updates | Lists all updates added by the current user
Table 1: Extended CDF APIs

resolve

original_df

row and column indices, respectively, and a’ is the flag and
v’ is the new value. This simple design allows for any ar-
bitrary flag or update. It is also easy to modify CDF and
GUI interfaces to allow users to customize the annotations
by providing an extra configuration of possible predefined
labels to be used for annotation without the need to touch
the underlying schema.

3 DEMONSTRATION OVERVIEW

Datasets. In this demonstration, we will use two publicly
available datasets: (1) Diabetes dataset” which contains 9
attributes describing health readings for 769 records, and (2)
Casualties dataset with more than 185k traffic accidents®.

Both datasets need cleaning before they can be used fur-
ther and we will use CoCLEAN to demonstrate how multiple
users can clean them collaboratively.

Demo attendees will be able to use CoCLEAN and learn
how a data owner can invite other collaborators, both lay
users and power users, to work simultaneously and clean
the dataset. We will use the aforementioned datasets and
CoCLEAN interfaces to demonstrate the complete process
starting from data uploading until data is consolidated.

Initialization. An owner will upload a dataset that needs to
be cleaned, where the owner could either be a lay user or
a power user. Hence, we provide a GUI (Figure 2(a)) if the
owner is a lay user, where he/she can upload a dataset by
simply selecting a CSV file from their local storage. COCLEAN
will return a URL that can be shared with other users. If the
owner is a power user, he/she can interact with CoCLEAN
through the Collaborative DataFrame (CDF). That is, a CDF
is constructed in a similar way to a regular Pandas datarame
(i.e., from CSV files, web pages, databases, etc.) or from an
existing dataframe. The owner can then invoke the share
command which will connect to the COCLEAN server, create
a copy of the data, and return a unique URL for the dataset,
as shown in the first four lines in Figure 3.

Lay User Cleaning. Figure 2(b) shows the interface of a lay
user for manual data cleaning. It shows a table that can be

"https://www.kaggle.com/uciml/pima-indians-diabetes-database
8https://data.gov.uk/dataset/cb7ae6f0- 4be6-4935-9277-47e5ce24al 1f/road-
safety-data

https://pandas.pydata.org
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data

< C (0 O localhost:8050

CoCLEAN

a % 86w Q0 am & :

Upload Dataset:

UPLOAD FILE

Csvfile

Select Tool:

FAHES X

Blind Collaboration:

e ®
(a) Data Upload
< C (¢ [localhost:8050

CoCLEAN

http://localhost:3000/dataset/5e1f55bca0a5b1fa5e72aa86

Number of times pregnant|(+] Plasma glucose concentration [~/ Diastolic blood pressure
b 12

v Clear column

1 1 Read onl 66
2 |s ead only 64
3 |1 Alignment > 66
5 (5 Filter by condition: 74
6 |3 M N 50
7|10 o
9 |8 ®And O Or 26
w None s 92
1 |10 74
12 |10 Filter by value: 80
15 (7 Search 0
17 |7 Selectall Clear 74
20 (3 “0 88
21 |8 @1 84
z U © 10 90
23 |9 @ 1 80
26 |7 76
Z |3 Bl o 92

(b) Data View
Figure 2: GUI interface for lay users

directly updated for flagging erroneous cells or updating cell
values. To facilitate navigation, each column has a drop down
menu located at the header that can be used to filter column
values. Different colors are used to indicate candidate cells for
repairs; yellow cells in the table are the candidate erroneous
cells identified by an automated tool such as FAHES [3],
and red cells are the ones that has been updated by other
users. User can right click on any given cell to update the
annotations or see suggested values from other collaborators
if the blind mode is off.

Power Users Cleaning. They interact with CoCLEAN
through the Collaborative DataFrame (CDF). They can sim-
ply create a Collaborative dataframe using the URL shared
by the owner and work as if it is a normal dataframe. Power
users can exploit automated data cleaning tools such as FA-
HES [3] (Figure 3) which detects disguised missing values
and use it with COCLEAN to indicate candidate cells for re-
pairs. We will show how batch operations such as updating

co o b Qax Bawed *0®am @ :
“~ Jupyter Using Fahes wicsaes A
In [12]: 1 import collaborative_data_frame as cdf
3 df = cdf.CollaborativeDataFrame(df, metadata = metadata)
4| ae
Refresh Commit
Y Numbeffc Plasmay Diastoliqt Tricepsl 2-Hour @ Body ma: Diabete¥ Age Y
0 6 148 72 35 0 336 0627 50
1 1 85 66 29 False : Detected By Fahes
2 8 183 64 - Label as False
3 1 89 66 23 80 : Updated By
s s 118 74 n nAnFuBhaSPNABm7ey
In [16]: 1 df.share()
"http://10.131.181.202:3000/dataset/5el£55bca0a5blfa5e72aa86"
In [20]: 1 impute missing_values(df)
2 df.commit ()

In [18]: 1 simple_policy = {
2 ‘at_least': 1,
3 ‘option': 'majority vote'
4}

6 resolved df, metadata = df.resolve(simple_policy)

Figure 3: Code + GUI interface for power users

multiple cells are done by executing arbitrary python code
against the dataframe. CoCLEAN will keep track of annota-
tions and updates and log all the contributions made from
each user. With the help of CDF extended APIs (Table 1),
users can commit their changes or consolidate the dataset
based on a given resolution policy as explained earlier.

Moreover, Figure 3 shows the Jupyter notebook-based
interface which consists of code cells and a GUI interface.
Code cells are for writing and executing code, and the GUI
interface allows direct update to the table. Both views are
side-by-side within the notebook and users have the flexibil-
ity to use them simultaneously in a customized way.

Resolving Results from Multiple Users. The owner can
either invoke a default aggregation policy, as shown at the
end of Figure 3, or provide their own aggregation policy
through writing CDF APIs, so as to resolve the results re-
turned from multiple users.

Conclusion. We demonstrate COCLEAN, a system to enable
collaborative data cleaning such that both lay users and
power users can contribute. A common use case is that a
data scientist finds that her dataset is wrong. She can invite
other users to clean. Meanwhile, she can keep exploring her
dataset while the other users are collaboratively cleaning it.

REFERENCES

[1] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, 1. F. Ilyas, M. Ouzzani,
P. Papotti, M. Stonebraker, and N. Tang. Detecting data errors: Where
are we and what needs to be done? PVLDB, 9(12):993-1004, 2016.

[2] M. Mahdavi, Z. Abedjan, R. C. Fernandez, S. Madden, M. Ouzzani,
M. Stonebraker, and N. Tang. Raha: A configuration-free error detection
system. In SIGMOD, pages 865-882, 2019.

[3] A. A. Qahtan, A. Elmagarmid, R. Castro Fernandez, M. Ouzzani, and
N. Tang. Fahes: A robust disguised missing values detector. In ACM
SIGKDD, 2018.

[4] T. Rekatsinas, X. Chu, L F. Ilyas, and C. Ré. Holoclean: Holistic data
repairs with probabilistic inference. PVLDB, 10(11):1190-1201, 2017.

	Abstract
	1 Introduction
	2 An Overview of CoClean
	3 Demonstration Overview
	References

